Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 8.427
1.
J Int Med Res ; 52(5): 3000605241252115, 2024 May.
Article En | MEDLINE | ID: mdl-38713460

OBJECTIVE: To assess the predictive value of the serum lipid profile for initial intravenous immunoglobulin (IVIG) resistance and coronary artery lesions (CALs) in patients with Kawasaki disease (KD). METHODS: This retrospective cohort study enrolled patients with KD and divided them into IVIG-responsive and IVIG-resistant groups. They were also stratified based on the presence of CALs (CALs and non-CALs groups). Clinical, echocardiographic and biochemical values were evaluated. A subgroup analysis was performed on complete and incomplete KD. Predictors of initial IVIG resistance and CALs were determined by multivariate logistic regression analysis. RESULTS: A total of 649 KD patients were enrolled: 151 had CALs and 76 had initial IVIG resistance. Low-density lipoprotein cholesterol (LDL-C) was significantly lower in the IVIG-resistant group than in the IVIG-responsive group. LDL-C and apolipoprotein (Apo) B were significantly lower in the CALs group compared with the non-CALs group. Multivariate logistic regression failed to identify the serum lipid profile (LDL-C, Apo A or Apo B) as an independent risk factor for initial IVIG resistance or CALs in KD patients. CONCLUSION: KD patients might have dyslipidaemia in the acute phase, but the serum lipid profile might not be suitable as a single predictor for initial IVIG resistance or CALs.


Coronary Artery Disease , Immunoglobulins, Intravenous , Mucocutaneous Lymph Node Syndrome , Humans , Mucocutaneous Lymph Node Syndrome/blood , Mucocutaneous Lymph Node Syndrome/drug therapy , Mucocutaneous Lymph Node Syndrome/complications , Mucocutaneous Lymph Node Syndrome/diagnosis , Immunoglobulins, Intravenous/therapeutic use , Male , Female , Coronary Artery Disease/blood , Coronary Artery Disease/drug therapy , Coronary Artery Disease/diagnosis , Coronary Artery Disease/immunology , Child, Preschool , Retrospective Studies , Infant , Cholesterol, LDL/blood , Drug Resistance , Lipids/blood , Child , Coronary Vessels/diagnostic imaging , Coronary Vessels/pathology , Risk Factors , Apolipoproteins B/blood , Prognosis
2.
Nat Commun ; 15(1): 3858, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719855

Experimental characterization of the transition state poses a significant challenge due to its fleeting nature. Negative ion photodetachment offers a unique tool for probing transition states and their vicinity. However, this approach is usually limited to Franck-Condon regions. For example, high-lying Feshbach resonances with an excited HF stretching mode (vHF = 2-4) were recently identified in the transition-state region of the F + NH3 → HF + NH2 reaction through photo-detaching FNH3- anions, but the direct photodetachment failed to observe the lower-lying vHF = 0,1 resonances and bound states due apparently to negligible Franck-Condon factors. Indeed, these weak transitions can be resonantly enhanced via a dipole-bound state (DBS) formed between an electron and the polar FNH3 species. In this study, we unveil a series of Feshbach resonances and bound states along the F + NH3 reaction path via a DBS by combining high-resolution photoelectron spectroscopy with high-level quantum dynamical computations. This study presents an approach for probing the activated complex in a reaction by negative ion photodetachment through a DBS.

3.
Int J Biol Sci ; 20(7): 2698-2726, 2024.
Article En | MEDLINE | ID: mdl-38725864

Pancreatic cancer is a malignancy with high mortality. In addition to the few symptoms until the disease reaches an advanced stage, the high fatality rate is attributed to its rapid development, drug resistance and lack of appropriate treatment. In the selection and research of therapeutic drugs, gemcitabine is the first-line drug for pancreatic cancer. Solving the problem of gemcitabine resistance in pancreatic cancer will contribute to the progress of pancreatic cancer treatment. Long non coding RNAs (lncRNAs), which are RNA transcripts longer than 200 nucleotides, play vital roles in cellular physiological metabolic activities. Currently, our group and others have found that some lncRNAs are aberrantly expressed in pancreatic cancer cells, which can regulate the process of cancer through autophagy and Wnt/ß-catenin pathways simultaneously and affect the sensitivity of cancer cells to therapeutic drugs. This review presents an overview of the recent evidence concerning the node of lncRNA for the cross-talk between autophagy and Wnt/ß-catenin signaling in pancreatic cancer, together with the practicability of lncRNAs and the core regulatory factors as targets in therapeutic resistance.


Autophagy , Drug Resistance, Neoplasm , Pancreatic Neoplasms , RNA, Long Noncoding , Wnt Signaling Pathway , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Humans , Autophagy/drug effects , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Animals
4.
Int J Biol Macromol ; 269(Pt 2): 132188, 2024 May 07.
Article En | MEDLINE | ID: mdl-38723808

Biodegradable polylactic acid (PLA)/nano­zinc oxide (ZnO)/additives non-woven slices were prepared by melt blending method. The effects of antibacterial agent nano-ZnO, antioxidant pentaerythrityl tetrakis-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionate (1010), and chain extender multi-functional epoxy (ADR), on the melt flow rate, mechanical properties, thermal stabilities and micromorphology of the slices were investigated. The melt flow rate decreased from 26.94 g/10 min to 17.76 g/10 min, and the tensile strength increased from 10.518 MPa to 30.427 MPa with the increase of nano-ZnO and additives content. The slices were further spunbonded. The wettability and antibacterial properties of PLA/nano-ZnO/additives antibacterial non-wovens were studied, and the antibacterial action mechanism was clarified. The results showed that the biodegradable PLA/nano-ZnO/additives antibacterial non-wovens were prepared continuously successfully. The prepared non-woven fabrics exhibited good hydrophobicity and antibacterial properties. The mechanism study shows that zinc ion produced by nano-ZnO and photocatalytic reaction make the fabrics have good antibacterial activity at low nano-ZnO content. When nano-ZnO concentration reaches 1.5 wt%, the antibacterial rate against Escherichia coli and Staphylococcus aureus reaches 98.52 % and 98.13 %, respectively.

5.
Nat Commun ; 15(1): 3934, 2024 May 10.
Article En | MEDLINE | ID: mdl-38729938

A-to-I mRNA editing in animals is mediated by ADARs, but the mechanism underlying sexual stage-specific A-to-I mRNA editing in fungi remains unknown. Here, we show that the eukaryotic tRNA-specific heterodimeric deaminase FgTad2-FgTad3 is responsible for A-to-I mRNA editing in Fusarium graminearum. This editing capacity relies on the interaction between FgTad3 and a sexual stage-specific protein called Ame1. Although Ame1 orthologs are widely distributed in fungi, the interaction originates in Sordariomycetes. We have identified key residues responsible for the FgTad3-Ame1 interaction. The expression and activity of FgTad2-FgTad3 are regulated through alternative promoters, alternative translation initiation, and post-translational modifications. Our study demonstrates that the FgTad2-FgTad3-Ame1 complex can efficiently edit mRNA in yeasts, bacteria, and human cells, with important implications for the development of base editors in therapy and agriculture. Overall, this study uncovers mechanisms, regulation, and evolution of RNA editing in fungi, highlighting the role of protein-protein interactions in modulating deaminase function.


Fungal Proteins , Fusarium , RNA Editing , RNA, Messenger , Fusarium/genetics , Fusarium/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Humans , Gene Expression Regulation, Fungal , Evolution, Molecular , Protein Processing, Post-Translational , Inosine/metabolism , Inosine/genetics
6.
Accid Anal Prev ; 202: 107613, 2024 Jul.
Article En | MEDLINE | ID: mdl-38705109

An unreasonable overtaking attempt on two-lane highways could cause drivers to suffer in terms of driving safety, comfort, and efficiency. Several external factors related to the traffic environment (e.g., speed and car type of surrounding vehicles), were found to be the significant factors in drivers' overtaking performance in the previous studies. However, the microscopic decision-making (e.g., the moments of the occupation of the opposite lane) mechanisms during overtaking, by means of which drivers react to changes in the external traffic environment and adjust their overtaking trajectories, are still need to be explored. Hence, this study had three goals: (i) To explore the spatial characteristics of micro-decisions (MDs) (such as the start and end point) in overtaking trajectories; (ii) To measure three types of performance indicators (i.e., safety, comfort, and efficiency) for the execution of overtaking maneuvers; (iii) To quantitatively explain the microscopic decision-making mechanism in overtaking. Data for overtaking trajectories were collected from driving a simulation experiment where 52 Chinese student drivers completed a series of overtaking maneuvers on a typical two-lane highway under different traffic conditions. Two analyses were conducted: firstly, the distributions of the relative distance between the ego and surrounding vehicles at four key points (i.e., the start, entry, back, and end) in the overtaking trajectory were investigated and clustered to uncover the spatial characteristics of the MDs. Secondly, the safety, comfort, and efficiency of the overtaking were measured by the aggregations of multi-targets collision risks, triaxial acceleration variances, and spatial consumptions respectively based on the Data Envelopment Analysis (DEA), which were further applied in a two-stage SEM model to reveal the quantitative interrelationships among the external factors, microscope decisions and performances in overtaking. We confirmed that the MDs could be considered as the mediating variables between the external factors and overtaking performances. In the presence of the more hazardous traffic environment (e.g., faster traffic flow and impeded by a truck), the safety, comfort and efficiency of overtaking would be deteriorated inevitably. But drivers would execute the overtaking under the longer passing sight distance, migrate their trajectories forward, and shorten the spatial duration to significantly improve the overtaking performances. Based on this mechanism, a overtaking trajectory optimization strategy for the advanced or automatic driving system, was confirmed and concluded that 1) the passing gap should be firstly planned according to the sight distance acceptance of different drivers, which directly determine the upper limit of the safety performance in the overtaking; 2) the trajectory forward migration and shortening the whole duration in overtaking could be effective to enhance the overtaking performances of the overtaking on the two-lane highway; 3) the guidance of the stable control of the steering wheel and gas/brake pedals is essential in the overtaking.


Automobile Driving , Computer Simulation , Decision Making , Safety , Humans , Male , Young Adult , Female , Environment Design , Adult , Accidents, Traffic/prevention & control
7.
RSC Adv ; 14(22): 15302-15318, 2024 May 10.
Article En | MEDLINE | ID: mdl-38741951

To purify water polluted by tetracycline antibiotics, a new visible light-driven magnetically recoverable photocatalyst, g-C3N4/CoFe2O4/Bi2MoO6, was prepared in this study, and it effectively removed tetracycline antibiotics. Its rapid recycling was achieved by external magnets, which greatly increased material utilization. After four repeated uses, the degradation rate of tetracycline antibiotics by the g-C3N4/CoFe2O4/Bi2MoO6 composite photocatalyst remained at a high level, and the magnetic separation performance remained stable. Subsequently, it was further discovered that the degradation mechanism of this photocatalytic system was consistent with a double Z-type mechanism, which enabled two transport channels for photogenerated electrons, and was favorable for the separation of the photogenerated electron-hole pairs and prolonged the lifetime of the photogenerated carriers. The active substances playing an important role in the photocatalytic system were ˙O2- and h+. In addition, the possible intermediates in the photocatalytic process were detected by GC-MS analysis, and a degradation mechanism was proposed. The ecotoxicity of the degradation products and intermediates was evaluated using the Toxicity Estimation Software Tool (TEST), and the mung bean seed cultivation test was carried out to visually and efficiently illustrate that the g-C3N4/CoFe2O4/Bi2MoO6 photocatalyst can effectively degrade antibiotics, with low ecotoxicity of the degradation products. This provides a new idea for the removal of organic pollutants using light energy.

8.
Article En | MEDLINE | ID: mdl-38713572

3D Gaussian Splatting (3D-GS) has emerged as a significant advancement in the field of Computer Graphics, offering explicit scene representation and novel view synthesis without the reliance on neural networks, such as Neural Radiance Fields (NeRF). This technique has found diverse applications in areas such as robotics, urban mapping, autonomous navigation, and virtual reality/augmented reality, just name a few. Given the growing popularity and expanding research in 3D Gaussian Splatting, this paper presents a comprehensive survey of relevant papers from the past year. We organize the survey into taxonomies based on characteristics and applications, providing an introduction to the theoretical underpinnings of 3D Gaussian Splatting. Our goal through this survey is to acquaint new researchers with 3D Gaussian Splatting, serve as a valuable reference for seminal works in the field, and inspire future research directions, as discussed in our concluding section.

9.
Poult Sci ; 103(7): 103807, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38713991

This study aimed to evaluate the effect of low molecular weight Acanthopanax polysaccharides on simulated digestion, probiotics, and intestinal flora of broilers in vitro. The experiments were carried out by H2O2-Vc degradation of Acanthopanax polysaccharides, in vitro simulated digestion to evaluate the digestive performance of polysaccharides with different molecular weights, in vitro probiotic evaluation of the probiotic effect of polysaccharides on lactobacilli and bifidobacteria, in vitro anaerobic fermentation and high-throughput sequencing of 16S rRNA genes to study the impact of Acanthopanax polysaccharides on the intestinal flora of broilers, and the effect of Acanthopanax polysaccharides on the short-chain fatty acids of intestines were determined by GC-MS method. The results showed that the molecular weight of Acanthopanax polysaccharide (ASPS) was 9,543 Da, and the molecular weights of polysaccharides ASPS-1 and ASPS-2 were reduced to 4,288 Da and 3,822 Da after degradation, and the particle sizes, PDIs, and viscosities were also significantly decreased. ASPS-1 has anti-digestive properties and better in vitro probiotic properties. The addition of ASPS-1 regulates the structure of intestinal microorganisms by regulating fecalibacterium to produce short-chain fatty acids, promoting the colonization of beneficial bacteria such as fecalibacterium, paraprevotella and diminishing the prevalence of detrimental bacteria such as Fusobacteria. Interestingly the ASPS-1 group found higher levels of Paraprevotella, which degraded trypsin in the gut, reducing inflammation, acted as a gut protector, and was influential in increasing the levels of acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, and total SCFAs in the fermented feces. Therefore, the degraded ASPS-1 can better regulate the structure of intestinal flora and promote the production of SCFAs, creating possibilities for its use as a potential prebiotic, which is conducive to the intestinal health of poultry.

10.
Chemosphere ; : 142264, 2024 May 05.
Article En | MEDLINE | ID: mdl-38714248

Extracellular DNA referred to DNA fragments existing outside the cell, originating from various cell release mechanisms, including active secretion, cell lysis, and phage-mediated processes. Extracellular DNA serves as a vital environmental biomarker, playing crucial ecological and environmental roles in water bodies. This review is summarized the mechanisms of extracellular DNA release, including pathways involving cell lysis, extracellular vesicles, and type IV secretion systems. Then, the extraction and detection methods of extracellular DNA from water, soil, and biofilm are described and analyzed. Finally, we emphasize the role of extracellular DNA in microbial community systems, including its significant contributions to biofilm formation, biodiversity through horizontal gene transfer (HGT), and electron transfer processes. This review offers a comprehensive insight into the sources, distribution, functions, and impacts of extracellular DNA within aquatic environments, aiming to foster further exploration and understanding of extracellular DNA dynamics in aquatic environments as well as other environments.

11.
Am J Clin Pathol ; 2024 May 12.
Article En | MEDLINE | ID: mdl-38733635

OBJECTIVES: Tumor mutational burden (TMB) is a significant biomarker for predicting immune checkpoint inhibitor response, but the clinical performance of whole-exome sequencing (WES)-based TMB estimation has received less attention compared to panel-based methods. This study aimed to assess the reliability and comparability of WES-based TMB analysis among laboratories under routine testing conditions. METHODS: A multicenter study was conducted involving 24 laboratories in China using in silico reference data sets. The accuracy and comparability of TMB estimation were evaluated using matched tumor-normal data sets. Factors such as accuracy of variant calls, limit of detection (LOD) of WES test, size of regions of interest (ROIs) used for TMB calculation, and TMB cutoff points were analyzed. RESULTS: The laboratories consistently underestimated the expected TMB scores in matched tumor-normal samples, with only 50% falling within the ±30% TMB interval. Samples with low TMB score (<2.5) received the consensus interpretation. Accuracy of variant calls, LOD of the WES test, ROI, and TMB cutoff points were important factors causing interlaboratory deviations. CONCLUSIONS: This study highlights real-world challenges in WES-based TMB analysis that need to be improved and optimized. This research will aid in the selection of more reasonable analytical procedures to minimize potential methodologic biases in estimating TMB in clinical exome sequencing tests. Harmonizing TMB estimation in clinical testing conditions is crucial for accurately evaluating patients' response to immunotherapy.

12.
Eur J Radiol ; 176: 111496, 2024 May 07.
Article En | MEDLINE | ID: mdl-38733705

PURPOSE: To develop a deep learning (DL) model for classifying histological types of primary bone tumors (PBTs) using radiographs and evaluate its clinical utility in assisting radiologists. METHODS: This retrospective study included 878 patients with pathologically confirmed PBTs from two centers (638, 77, 80, and 83 for the training, validation, internal test, and external test sets, respectively). We classified PBTs into five categories by histological types: chondrogenic tumors, osteogenic tumors, osteoclastic giant cell-rich tumors, other mesenchymal tumors of bone, or other histological types of PBTs. A DL model combining radiographs and clinical features based on the EfficientNet-B3 was developed for five-category classification. The area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity were calculated to evaluate model performance. The clinical utility of the model was evaluated in an observer study with four radiologists. RESULTS: The combined model achieved a macro average AUC of 0.904/0.873, with an accuracy of 67.5 %/68.7 %, a macro average sensitivity of 66.9 %/57.2 %, and a macro average specificity of 92.1 %/91.6 % on the internal/external test set, respectively. Model-assisted analysis improved accuracy, interpretation time, and confidence for junior (50.6 % vs. 72.3 %, 53.07[s] vs. 18.55[s] and 3.10 vs. 3.73 on a 5-point Likert scale [P < 0.05 for each], respectively) and senior radiologists (68.7 % vs. 75.3 %, 32.50[s] vs. 21.42[s] and 4.19 vs. 4.37 [P < 0.05 for each], respectively). CONCLUSION: The combined DL model effectively classified histological types of PBTs and assisted radiologists in achieving better classification results than their independent visual assessment.

13.
J Hazard Mater ; 472: 134534, 2024 May 07.
Article En | MEDLINE | ID: mdl-38733786

Cowpea plants, renowned for their high edibility, pose a significant risk of pesticide residue contamination. Elucidating the behavior of pesticide residues and their key metabolic pathways is critical for ensuring cowpea safety and human health. This study investigated the migration of pesticide residues and their key metabolic pathways in pods throughout the growth process of cowpea plants via in situ mass spectrometry. To this end, four pesticides--including systemic (thiram), and nonsystemic (fluopyram, pyriproxyfen, and cyromazine) pesticides--were selected. The results indicate the direct upward and downward transmission of pesticides in cowpea stems and pods. Systemic pesticides gradually migrate to the core of cowpea plants, whereas nonsystemic pesticides remain on the surface of cowpea peels. The migration rate is influenced by the cowpea maturity, logarithmic octanol-water partition coefficient (log Kow) value, and molecular weight of the pesticide. Further, 20 types of key metabolites related to glycolysis, tricarboxylic acid cycle, and flavonoid synthesis were found in cowpea pods after pesticide treatment. These findings afford insights into improving cowpea quality and ensuring the safe use of pesticides.

14.
Stem Cell Res ; 77: 103435, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38733812

We used a non-integrated reprogramming approach to establish a human induced pluripotent stem cell (hiPSC) line (INNDSUi004-A) from the skin fibroblasts of a 13-year-old female individual with Congenital Nemaline Myopath. The cells obtained have typical characteristics of embryonic stem cells, show expression of specific pluripotency markers, and can differentiate into three germ layers in vitro. This iPSC cell line has the genetic information of the patient and is a good model for studying disease mechanisms and developing novel therapies.

15.
Clin Chim Acta ; 559: 119724, 2024 May 10.
Article En | MEDLINE | ID: mdl-38734225

Laboratory medicine has become a highly automated medical discipline. Nowadays, artificial intelligence (AI) applied to laboratory medicine is also gaining more and more attention, which can optimize the entire laboratory workflow and even revolutionize laboratory medicine in the future. However, only a few commercially available AI models are currently approved for use in clinical laboratories and have drawbacks such as high cost, lack of accuracy, and the need for manual review of model results. Furthermore, there are a limited number of literature reviews that comprehensively address the research status, challenges, and future opportunities of AI applications in laboratory medicine. Our article begins with a brief introduction to AI and some of its subsets, then reviews some AI models that are currently being used in clinical laboratories or that have been described in emerging studies, and explains the existing challenges associated with their application and possible solutions, finally provides insights into the future opportunities of the field. We highlight the current status of implementation and potential applications of AI models in different stages of the clinical testing process.

16.
J Med Food ; 2024 May 14.
Article En | MEDLINE | ID: mdl-38742981

Obesity is an ongoing global health problem, and Cichorium glandulosum (CG, chicory) is traditionally used as a hepatoprotective and lipid-lowering drug. However, there is still a lack of research on the role of CG in the treatment of obesity. In the present study, we found that CG significantly delayed weight gain and positively affected glucolipid metabolism disorders, serum metabolism levels, and the degree of liver and kidney oxidative stress in high-fat diet (HFD) mice. Further examination of the effects of CG on intestinal microenvironmental dysregulation and its metabolites in HFD mice revealed that the CG ethanol extract high-dose group (CGH) did not have a significant regulatory effect on short-chain fatty acids. Still, CGH significantly decreased the levels of 12α-OH/non-12α-OH bile acids and also found significant upregulation of proteobacteria and downregulation of cyanobacteria at the phylum level. CG may have ameliorated obesity and metabolic abnormalities in mice by repairing gut microbiota dysbiosis and modulating bile acid biosynthesis.

17.
medRxiv ; 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38712163

Importance: The X chromosome has remained enigmatic in Alzheimer's disease (AD), yet it makes up 5% of the genome and carries a high proportion of genes expressed in the brain, making it particularly appealing as a potential source of unexplored genetic variation in AD. Objectives: Perform the first large-scale X chromosome-wide association study (XWAS) of AD. Primary analyses are non-stratified, while secondary analyses evaluate sex-stratified effects. Design: Meta-analysis of genetic association studies in case-control, family-based, population-based, and longitudinal AD-related cohorts from the US Alzheimer's Disease Genetics Consortium (ADGC) and Alzheimer's Disease Sequencing Project (ADSP), the UK Biobank (UKB), the Finnish health registry (FinnGen), and the US Million Veterans Program (MVP). Risk for AD evaluated through case-control logistic regression analyses. Data were analyzed between January 2023 and March 2024. Setting: Genetic data available from high-density single-nucleotide polymorphism (SNP) microarrays and whole-genome sequencing (WGS). Summary statistics for multi-tissue expression and protein quantitative trait loci (QTL) available from published studies, enabling follow-up genetic colocalization analyses. Participants: 1,629,863 eligible participants were selected from referred and volunteer samples, of which 477,596 were excluded for analysis exclusion criteria. Number of participants who declined to participate in original studies was not available. Main Outcome and Measures: Risk for AD (odds ratio; OR) with 95% confidence intervals (CI). Associations were considered at X-chromosome-wide (P-value<1e-5) and genome-wide (P-value<5e-8) significance. Results: Analyses included 1,152,284 non-Hispanic White European ancestry subjects (57.3% females), including 138,558 cases. 6 independent genetic loci passed X-chromosome-wide significance, with 4 showing support for causal links between the genetic signal for AD and expression of nearby genes in brain and non-brain tissues. One of these 4 loci passed conservative genome-wide significance, with its lead variant centered on an intron of SLC9A7 (OR=1.054, 95%-CI=[1.035, 1.075]) and colocalization analyses prioritizing both the SLC9A7 and nearby CHST7 genes. Conclusion and Relevance: We performed the first large-scale XWAS of AD and identified the novel SLC9A7 locus. SLC9A7 regulates pH homeostasis in Golgi secretory compartments and is anticipated to have downstream effects on amyloid beta accumulation. Overall, this study significantly advances our knowledge of AD genetics and may provide novel biological drug targets.

18.
RSC Adv ; 14(21): 14784-14792, 2024 May 02.
Article En | MEDLINE | ID: mdl-38716103

Volatile organic compounds (VOCs) originating from diverse sources with complex compositions pose threats to both environmental safety and human health. Photocatalytic treatment of VOCs has garnered attention due to its high efficacy at room temperature. However, the intricate photochemical reaction generates ozone (O3), causing secondary pollution. Herein, our work developed a novel "synergistic effect" system for photocatalytic co-treatment of VOCs and O3 secondary pollution. Under the optimized reactor conditions simulated with computational fluid dynamics (CFD), MgO-loaded g-C3N4 composites (MgO/g-C3N4) were synthesized as efficient catalysts for the photocatalytic synergistic treatment process. Density functional theory (DFT) calculations, characterization, and electron paramagnetic resonance (EPR) tests revealed that the addition of MgO reduced the band gap of g-C3N4, and increased O3 molecule adsorption in the composites, efficiently harnessing the synergistic effect of O3 to generate a significant quantity of reactive oxygen radicals, thereby facilitating the removal of VOCs and O3. This study provides new insights for simultaneous elimination of VOCs and O3 secondary pollution by a photocatalytic process.

19.
J Biol Chem ; : 107351, 2024 May 06.
Article En | MEDLINE | ID: mdl-38718868

SCAP plays a central role in controlling lipid homeostasis by activating SREBP-1, a master transcription factor in controlling fatty acid (FA) synthesis. However, how SCAP expression is regulated in human cancer cells remains unknown. Here, we revealed that STAT3 binds to the promoter of SCAP to activate its expression across multiple cancer cell types. Moreover, we identified that STAT3 also concurrently interacts with the promoter of SREBF1 gene (encoding SREBP-1), amplifying its expression. This dual action by STAT3 collaboratively heightens FA synthesis. Pharmacological inhibition of STAT3 significantly reduces the levels of unsaturated FAs and phospholipids bearing unsaturated FA chains by reducing the SCAP-SREBP-1 signaling axis and its downstream effector SCD1. Examination of clinical samples from patients with glioblastoma, the most lethal brain tumor, demonstrates a substantial co-expression of STAT3, SCAP, SREBP-1, and SCD1. These findings unveil STAT3 directly regulates the expression of SCAP and SREBP-1 to promote FA synthesis, ultimately fueling tumor progression.

20.
J Asian Nat Prod Res ; : 1-9, 2024 May 09.
Article En | MEDLINE | ID: mdl-38721701

Two new triterpenes mayteneri A (1), mayteneri B (2), and seven known compounds (3-9) were isolated from stems of Maytenus hookeri Loes. The chemical structures of compounds 1 and 2 were established by 1D, 2D NMR, HRESIMS analysis, and calculating electronic circular dichroism (ECD). The structures of known compounds 3-9 were determined by comparison of their spectral with those reported. Compounds 4-7 showed significant inhibitory activity for NLRP3 inflammasome, with the IC50 values of 2.36-3.44 µM.

...